Áteresztőképesség - nagy olaj - és gázcikk enciklopédia, cikk, 3. oldal
Átáramlás - ív
Su - a termelési egység szállítási költsége az ív mentén; összeadódik minden ívben; Dy az áteresztőképesség. Ez a beállítás biztosítja a hálózaton belüli streamek befogadását, amelyek nem haladják meg az egyes ívek áteresztőképességét, valamint a minimális szállítási költségeket. [31]
TEOREM 4.2. A megoldás a probléma megoldására a maximális áramlás megtalálása a leírt hálózat, amely alatt minden elemi áram nem haladja meg az ív kapacitását. (4.11) - (4.13), vagy megállapítást nyer, hogy nem lehet megtalálni a megengedhető menetrend. [32]
Az ilyen kapcsolatok közvetlen kiszámítása az alhálózat sávszélességének felső határértékének csökkenésével számolható ki, amelyet az alhálózatban szereplő változó sávszélességű tömbök átfolyási kapacitásának csökkenésével kell számolni. Programparaméterek felépítésekor az alhálózat felső határértékét az év téli és nyári időszakaihoz a (VI.11) - (VI.12) kapcsolatok találják. [33]
A minimális költségfolyam problémája abból áll, hogy az r csúcsról az s csúcsra helyhez kötött áramlást találunk, amely kielégíti az ívek kapacitásának korlátait. és annak értéke egy adott számmal egyenlő (és a költség minimális. [34]
Tegyük fel, hogy N (VA) egy megadott hálózat, amelynek a (a) és P (a) korlátai az ívek kapacitása. [35]
A hálózat egyes ívjei (Ei, EJ) (szegélye (Ei, EJ)) két mennyiség társul: az ív (él) L kapacitása; ai ív érték (értékáram szállítási egység az ív mentén (Ei, EJ), illetve él (Ei, EJ), azonos mindkét irányban. Meg kell találni az áramlást a forrástól a csatorna egy előre meghatározott érték az 5, amelynek legkisebb értéke. [36]
Alkalmazásoknál gyakran alkalmazzák a szelet értéke tételét: ha az ívkapacitás teljes, akkor létezik egy egész (maximális) (álló) jegyzet. [37]
Mindegyik ív rendelni két szám DIF és sc, amelyek közül az első áramlását jelzi határérték GR -. / Arc (ív áthaladási teljesítményű, és a második - a kapcsolódó költségek egy patak [38].
Tekintsük azt a C grafikont, amelyben két p és s számot rendelünk mindegyik ívhez (x, X), illetve az ív megbízhatóságához és áteresztőképességéhez. Az I-ből a legnagyobb csökkentett áteresztőképességű út elérésének problémája az utolsó két probléma kombinációja a Sec. [39]
Tekintsünk egy G grafikont, amelybe két szám ptj és qtj van hozzárendelve mindegyik ívhez (xt, Xj), ami reprezentálja az ív megbízhatóságát és áteresztőképességét. A legnagyobb csökkentett áteresztőképességű s-től a t-ig terjedő út megtalálásának problémája a fenti 2. fejezetben tárgyalt útvonalak utolsó két problémájának kombinációja. [40]
A számítási program paraméterei (P6M tömb) és a javítási stop időpontja (P12M tömb) szerint a P11 modul minden ütemezési változat változatát kiszámítja a tervezési horizont diszkrétségének minden intervallumában. [41]
A hálózaton olyan digraphot értünk, amelyben minden ív egy nem negatív c (u, v) egész számhoz kapcsolódik, amit az ív áteresztőképességének nevezünk. A forrás nem tartalmaz íveket, és az ív nem jön ki a lefolyóból. [42]
DQ (Г - 7 п) Dn, ahol 7 1 5h, 7 n 1 h, Dn -2, mivel az ív (2, 3) kapacitása csak 4 egység áramlást eredményez. [44]
Áramlási egy íven keresztül 15 [csomópontok közötti A2 (j) - (TPP)] megfelel az áramlás által termelt villamos energia az erőmű, és a kapacitás a ív egyenlő a marginális kapacitása hőerőmű. Arcs 16, 17, 18 csomópontok között [Y2 (i)] - (TPP), [R2 (I)] - (TPP), [H2 (i)] - (TPP) jelzik a lehetőségét, hogy egy alkalmas tüzelőanyag az erőmű, és a a teljesítményüket a TPP-k műszaki jellemzői határozzák meg az ilyen típusú üzemanyag feldolgozásához. Csomópontok közötti [H2 (i)], [R2 (i)], V2 (i)] ábrázoltuk egy pár ív, amellyel leírására a folyamat az átalakítás és helyettesítését egy másik energiaforrás. Az ívek kapacitását a technikai képességek határozzák meg. [45]
Oldalak: 1 2 3 4